Copied to
clipboard

G = C42.34Q8order 128 = 27

34th non-split extension by C42 of Q8 acting via Q8/C2=C22

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C42.34Q8, C23.302C24, C424C4.19C2, (C2×C42).30C22, C4.40(C42.C2), C22.62(C22×Q8), (C22×C4).502C23, C45(C23.81C23), C45(C23.83C23), C23.83C23.52C2, C2.C42.537C22, C23.81C23.56C2, C2.9(C23.37C23), C2.17(C23.36C23), (C4×C4⋊C4).47C2, (C2×C4).123(C2×Q8), C2.7(C2×C42.C2), (C2×C4).93(C4○D4), (C2×C4⋊C4).844C22, C22.182(C2×C4○D4), (C2×C4)3(C23.81C23), SmallGroup(128,1134)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C42.34Q8
C1C2C22C23C22×C4C2×C42C4×C4⋊C4 — C42.34Q8
C1C23 — C42.34Q8
C1C22×C4 — C42.34Q8
C1C23 — C42.34Q8

Subgroups: 308 in 200 conjugacy classes, 108 normal (8 characteristic)
C1, C2, C2 [×6], C4 [×4], C4 [×20], C22, C22 [×6], C2×C4 [×18], C2×C4 [×36], C23, C42 [×4], C42 [×12], C4⋊C4 [×24], C22×C4, C22×C4 [×14], C2.C42 [×16], C2×C42, C2×C42 [×6], C2×C4⋊C4 [×12], C424C4, C4×C4⋊C4 [×6], C23.81C23 [×4], C23.83C23 [×4], C42.34Q8

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], C2×Q8 [×6], C4○D4 [×12], C24, C42.C2 [×4], C22×Q8, C2×C4○D4 [×6], C2×C42.C2, C23.36C23 [×4], C23.37C23 [×2], C42.34Q8

Generators and relations
 G = < a,b,c,d | a4=b4=c4=1, d2=a2b2c2, ab=ba, cac-1=a-1b2, dad-1=ab2, bc=cb, bd=db, dcd-1=c-1 >

Smallest permutation representation
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 25 68 30)(2 26 65 31)(3 27 66 32)(4 28 67 29)(5 44 125 45)(6 41 126 46)(7 42 127 47)(8 43 128 48)(9 54 14 83)(10 55 15 84)(11 56 16 81)(12 53 13 82)(17 62 22 85)(18 63 23 86)(19 64 24 87)(20 61 21 88)(33 118 38 123)(34 119 39 124)(35 120 40 121)(36 117 37 122)(49 108 90 95)(50 105 91 96)(51 106 92 93)(52 107 89 94)(57 116 80 111)(58 113 77 112)(59 114 78 109)(60 115 79 110)(69 101 74 100)(70 102 75 97)(71 103 76 98)(72 104 73 99)
(1 125 117 75)(2 8 118 69)(3 127 119 73)(4 6 120 71)(5 122 70 68)(7 124 72 66)(9 24 51 80)(10 18 52 60)(11 22 49 78)(12 20 50 58)(13 21 91 77)(14 19 92 57)(15 23 89 79)(16 17 90 59)(25 45 37 97)(26 43 38 101)(27 47 39 99)(28 41 40 103)(29 46 35 98)(30 44 36 102)(31 48 33 100)(32 42 34 104)(53 61 105 113)(54 87 106 111)(55 63 107 115)(56 85 108 109)(62 95 114 81)(64 93 116 83)(65 128 123 74)(67 126 121 76)(82 88 96 112)(84 86 94 110)
(1 82 124 107)(2 54 121 95)(3 84 122 105)(4 56 123 93)(5 113 73 86)(6 109 74 64)(7 115 75 88)(8 111 76 62)(9 40 90 31)(10 36 91 27)(11 38 92 29)(12 34 89 25)(13 39 52 30)(14 35 49 26)(15 37 50 32)(16 33 51 28)(17 48 80 103)(18 44 77 99)(19 46 78 101)(20 42 79 97)(21 47 60 102)(22 43 57 98)(23 45 58 104)(24 41 59 100)(53 119 94 68)(55 117 96 66)(61 127 110 70)(63 125 112 72)(65 83 120 108)(67 81 118 106)(69 87 126 114)(71 85 128 116)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,25,68,30)(2,26,65,31)(3,27,66,32)(4,28,67,29)(5,44,125,45)(6,41,126,46)(7,42,127,47)(8,43,128,48)(9,54,14,83)(10,55,15,84)(11,56,16,81)(12,53,13,82)(17,62,22,85)(18,63,23,86)(19,64,24,87)(20,61,21,88)(33,118,38,123)(34,119,39,124)(35,120,40,121)(36,117,37,122)(49,108,90,95)(50,105,91,96)(51,106,92,93)(52,107,89,94)(57,116,80,111)(58,113,77,112)(59,114,78,109)(60,115,79,110)(69,101,74,100)(70,102,75,97)(71,103,76,98)(72,104,73,99), (1,125,117,75)(2,8,118,69)(3,127,119,73)(4,6,120,71)(5,122,70,68)(7,124,72,66)(9,24,51,80)(10,18,52,60)(11,22,49,78)(12,20,50,58)(13,21,91,77)(14,19,92,57)(15,23,89,79)(16,17,90,59)(25,45,37,97)(26,43,38,101)(27,47,39,99)(28,41,40,103)(29,46,35,98)(30,44,36,102)(31,48,33,100)(32,42,34,104)(53,61,105,113)(54,87,106,111)(55,63,107,115)(56,85,108,109)(62,95,114,81)(64,93,116,83)(65,128,123,74)(67,126,121,76)(82,88,96,112)(84,86,94,110), (1,82,124,107)(2,54,121,95)(3,84,122,105)(4,56,123,93)(5,113,73,86)(6,109,74,64)(7,115,75,88)(8,111,76,62)(9,40,90,31)(10,36,91,27)(11,38,92,29)(12,34,89,25)(13,39,52,30)(14,35,49,26)(15,37,50,32)(16,33,51,28)(17,48,80,103)(18,44,77,99)(19,46,78,101)(20,42,79,97)(21,47,60,102)(22,43,57,98)(23,45,58,104)(24,41,59,100)(53,119,94,68)(55,117,96,66)(61,127,110,70)(63,125,112,72)(65,83,120,108)(67,81,118,106)(69,87,126,114)(71,85,128,116)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,25,68,30)(2,26,65,31)(3,27,66,32)(4,28,67,29)(5,44,125,45)(6,41,126,46)(7,42,127,47)(8,43,128,48)(9,54,14,83)(10,55,15,84)(11,56,16,81)(12,53,13,82)(17,62,22,85)(18,63,23,86)(19,64,24,87)(20,61,21,88)(33,118,38,123)(34,119,39,124)(35,120,40,121)(36,117,37,122)(49,108,90,95)(50,105,91,96)(51,106,92,93)(52,107,89,94)(57,116,80,111)(58,113,77,112)(59,114,78,109)(60,115,79,110)(69,101,74,100)(70,102,75,97)(71,103,76,98)(72,104,73,99), (1,125,117,75)(2,8,118,69)(3,127,119,73)(4,6,120,71)(5,122,70,68)(7,124,72,66)(9,24,51,80)(10,18,52,60)(11,22,49,78)(12,20,50,58)(13,21,91,77)(14,19,92,57)(15,23,89,79)(16,17,90,59)(25,45,37,97)(26,43,38,101)(27,47,39,99)(28,41,40,103)(29,46,35,98)(30,44,36,102)(31,48,33,100)(32,42,34,104)(53,61,105,113)(54,87,106,111)(55,63,107,115)(56,85,108,109)(62,95,114,81)(64,93,116,83)(65,128,123,74)(67,126,121,76)(82,88,96,112)(84,86,94,110), (1,82,124,107)(2,54,121,95)(3,84,122,105)(4,56,123,93)(5,113,73,86)(6,109,74,64)(7,115,75,88)(8,111,76,62)(9,40,90,31)(10,36,91,27)(11,38,92,29)(12,34,89,25)(13,39,52,30)(14,35,49,26)(15,37,50,32)(16,33,51,28)(17,48,80,103)(18,44,77,99)(19,46,78,101)(20,42,79,97)(21,47,60,102)(22,43,57,98)(23,45,58,104)(24,41,59,100)(53,119,94,68)(55,117,96,66)(61,127,110,70)(63,125,112,72)(65,83,120,108)(67,81,118,106)(69,87,126,114)(71,85,128,116) );

G=PermutationGroup([(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,25,68,30),(2,26,65,31),(3,27,66,32),(4,28,67,29),(5,44,125,45),(6,41,126,46),(7,42,127,47),(8,43,128,48),(9,54,14,83),(10,55,15,84),(11,56,16,81),(12,53,13,82),(17,62,22,85),(18,63,23,86),(19,64,24,87),(20,61,21,88),(33,118,38,123),(34,119,39,124),(35,120,40,121),(36,117,37,122),(49,108,90,95),(50,105,91,96),(51,106,92,93),(52,107,89,94),(57,116,80,111),(58,113,77,112),(59,114,78,109),(60,115,79,110),(69,101,74,100),(70,102,75,97),(71,103,76,98),(72,104,73,99)], [(1,125,117,75),(2,8,118,69),(3,127,119,73),(4,6,120,71),(5,122,70,68),(7,124,72,66),(9,24,51,80),(10,18,52,60),(11,22,49,78),(12,20,50,58),(13,21,91,77),(14,19,92,57),(15,23,89,79),(16,17,90,59),(25,45,37,97),(26,43,38,101),(27,47,39,99),(28,41,40,103),(29,46,35,98),(30,44,36,102),(31,48,33,100),(32,42,34,104),(53,61,105,113),(54,87,106,111),(55,63,107,115),(56,85,108,109),(62,95,114,81),(64,93,116,83),(65,128,123,74),(67,126,121,76),(82,88,96,112),(84,86,94,110)], [(1,82,124,107),(2,54,121,95),(3,84,122,105),(4,56,123,93),(5,113,73,86),(6,109,74,64),(7,115,75,88),(8,111,76,62),(9,40,90,31),(10,36,91,27),(11,38,92,29),(12,34,89,25),(13,39,52,30),(14,35,49,26),(15,37,50,32),(16,33,51,28),(17,48,80,103),(18,44,77,99),(19,46,78,101),(20,42,79,97),(21,47,60,102),(22,43,57,98),(23,45,58,104),(24,41,59,100),(53,119,94,68),(55,117,96,66),(61,127,110,70),(63,125,112,72),(65,83,120,108),(67,81,118,106),(69,87,126,114),(71,85,128,116)])

Matrix representation G ⊆ GL6(𝔽5)

030000
300000
002200
000300
000001
000040
,
100000
010000
003000
000300
000010
000001
,
300000
020000
002200
000300
000001
000010
,
010000
100000
001100
003400
000020
000002

G:=sub<GL(6,GF(5))| [0,3,0,0,0,0,3,0,0,0,0,0,0,0,2,0,0,0,0,0,2,3,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,2,3,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,3,0,0,0,0,1,4,0,0,0,0,0,0,2,0,0,0,0,0,0,2] >;

44 conjugacy classes

class 1 2A···2G4A···4H4I···4AJ
order12···24···44···4
size11···11···14···4

44 irreducible representations

dim1111122
type+++++-
imageC1C2C2C2C2Q8C4○D4
kernelC42.34Q8C424C4C4×C4⋊C4C23.81C23C23.83C23C42C2×C4
# reps11644424

In GAP, Magma, Sage, TeX

C_4^2._{34}Q_8
% in TeX

G:=Group("C4^2.34Q8");
// GroupNames label

G:=SmallGroup(128,1134);
// by ID

G=gap.SmallGroup(128,1134);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,232,758,723,184,80]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2*b^2*c^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽